Assessing EEG neuroimaging with machine learning

نویسنده

  • Andrew X Stewart
چکیده

Neuroimaging techniques can give novel insights into the nature of human cognition. We do not wish only to label patterns of activity as potentially associated with a cognitive process, but also to probe this in detail, so as to better examine how it may inform mechanistic theories of cognition. A possible approach towards this goal is to extend EEG ‘brain-computer interface’ (BCI) tools – where motor movement intent is classified from brain activity – to also investigate visual cognition experiments. We hypothesised that, building on BCI techniques, information from visual object tasks could be classified from EEG data. This could allow novel experimental designs to probe visual information processing in the brain. This can be tested and falsified by application of machine learning algorithms to EEG data from a visual experiment, and quantified by scoring the accuracy at which trials can be correctly classified. Further, we hypothesise that ICA can be used for source-separation of EEG data to produce putative activity patterns associated with visual process mechanisms. Detailed profiling of these ICA sources could be informative to the nature of visual cognition in a way that is not accessible through other means. While ICA has been used previously in removing ’noise’ from EEG data, profiling the relation of common ICA sources to cognitive processing appears less well explored. This can be tested and falsified by using ICA sources as training data for the machine learning, and quantified by scoring the accuracy at which trials can be correctly classified using this data, while also comparing this with the equivalent EEG data. We find that machine learning techniques can classify the presence or absence of visual stimuli at 85% accuracy (0.65 AUC) using a single optimised channel of EEG data, and this improves to 87% (0.7 AUC) using data from an equivalent single ICA source. We identify data from this ICA source at time period around 75–125 ms post-stimuli presentation as greatly more informative in decoding the trial label. The most informative ICA source is located in the central occipital region and typically has prominent 10-12Hz synchrony and a -5 μV ERP dip at around 100ms. This appears to be the best predictor of trial identity in our experiment. With these findings, we then explore further experimental designs to investigate ongoing visual attention and perception, attempting online classification of vision using these techniques and IC sources. We discuss how these relate to standard EEG landmarks such as the N170 and P300, and compare their use. With this thesis, we explore this methodology of quantifying EEG neuroimaging data with machine learning separation and classification and discuss how this can be used to investigate visual cognition. We hope the greater information from EEG analyses with predictive power of each ICA source quantified by machine learning might give insight and constraints for macro level models of visual cognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single trial decoding of belief decision making from EEG and fMRI data using independent components features

The complex task of assessing the veracity of a statement is thought to activate uniquely distributed brain regions based on whether a subject believes or disbelieves a given assertion. In the current work, we present parallel machine learning methods for predicting a subject's decision response to a given propositional statement based on independent component (IC) features derived from EEG and...

متن کامل

Decoding Subjective Intensity of Nociceptive Pain from Pre-stimulus and Post-stimulus Brain Activities

Pain is a highly subjective experience. Self-report is the gold standard for pain assessment in clinical practice, but it may not be available or reliable in some populations. Neuroimaging data, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have the potential to be used to provide physiology-based and quantitative nociceptive pain assessment tools that c...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

Signal Processing and Machine Learning for Single-trial Analysis of Simultaneously Acquired EEG and fMRI

The simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a potentially powerful multimodal imaging technique for measuring the functional activity of the human brain. Given that EEG measures the electrical activity of neural populations while fMRI measures hemodynamics via a blood oxygenationlevel–dependent (BOLD) signal related to neurona...

متن کامل

Bedside Evaluation of the Functional Organization of the Auditory Cortex in Patients with Disorders of Consciousness

To measure the level of residual cognitive function in patients with disorders of consciousness, the use of electrophysiological and neuroimaging protocols of increasing complexity is recommended. This work presents an EEG-based method capable of assessing at an individual level the integrity of the auditory cortex at the bedside of patients and can be seen as the first cortical stage of this h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017